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THE FIRST FUNDAMENTAL PROBLEM OF THE THEORY OF 
ELASTICITY FOR A SYMMETRIC LUNE* 

P.V. KEREKESBA, E.I. LEMPER and O.V. MEDEROS 

The first fundamental problem of the theory of elasticity is considered 
for a symmetric lune, when a symmetrically distributed normal load is 
specified on its boundary, and there are no tangential stresses. The 
problem is formulated and solved without preliminary reduction to the 
basic biharmonic problem. The proposed version and solution are based 
on the combined method of Fourier integrals and analysis of the Carleman 
problem /l, 2/. The problem of the stress state in a circular lune acted 
upon along the segments of its side surface by a uniform, normal 
compressive force was considered earlier in /3/, where the first funda- 
mental problem of the theory of elasticity for a lune was reduced to the 
corresponding biharmonic problem. 

1. The problem is formulated as follows /3/: to find the solution of the boundary value 
problem 

-&j \fj =O, B=irv; h= cl,a_:coJB 

where g (a)/2 is a given function characterizing the distributed load, and UJ (oL,~) is anunknown 
function. The symmetry of the stress state makes it possible to utilize the boundary condi- 
tions on the coordinate line p= y only, and we need consider only half of the region occupied 
by the lune - m<a<m,o<fiBd. 

Applying the integral Fourier transformation to (1.1) and boundary conditions (1.2), we 
obtain 

d’W 
F+2(i--) dt I -ff&+(,a+l)aw=o (1.3) 

(I + I)% W (2 + i, y) + (t - i)' W (z - i, y) + ? COS YZ’W (I. V) + 
i (2 + i) W (1: + i. y) -i (2 - i) W (z - 1, y) = G (I) 

‘dW 
Y$ &V = 

(w=v($;, c=v&?q), v(f)=$&@-=d=) 
-0D 

(1.4) 

Let us write the general solution of (1.3) symmetrical with respect to fl 

W(=, p) = A (z) ch ZB cos B + B (z) shzt3 sin B (1.5) 

Substituting this solution into the second boundary condition of (1.4), we obtain a relation 
connecting B (2)with A(Z), and from (1.5) we obtain 

w (=. p) = A (t) [ch Z@ cos 0 + C(I) sh ZB sin 81 (1.6) 

c (I) = (tg y - z thsy) (tgy - th 'Y)-' 
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Using the first boundary condition of (1.4), we arrive at 
(x + 2i) (z + i) F (I + i) + (z - 2i) (I - i) F (z - i) + 

2 cos y (3 + 1) F (I) = G (2) 
(F (3) = u’ (z, v)) 

2. We shall solve (1.7) by three different methods. 
First method. Multiplying (1.7) by x we obtain 

(z* + 2zi) @I (z + i)+ (9 - 2ri) U+ (3 - i) + 2 cos +J (z* + 1) @I (3) = ~'4z) (@I (2) = zF (I)). 

Consider a more general equation 

( 5 up”) @l (I + i) + ( 5 bpk) a$ (2 - i) + 5 ( 5 c,z”) a, (2) = ZG (z) 
k=O koo k=d 

whose coefficients have the following properties: 

2 
b 

n (n--k-l)! 
-- ir-kk-l 

’ r=2p n-7 = %-zp n-2p c (r-2k- ,)! An-Sk-1 
k-0 

2 
b 

n (n-2k)! 
n-7 = %I-w-1- n-2p-1 

c 

i,-kk 
mAn-tk ’ r=2pfi 

=o 
e n--r = A n--r’ 

r=o,i,..,n 

(f$,_.=%,_++$ ‘“-;;“I! A,,+kik) 

The properties of the coefficients (2.3) enable us to write (2.2) in the form 

P (z + i) + Y (I - i) + hY (2) = +G (z) 

Applying now an inverse Fourier transformation to (2.4), we obtain 

A solution of (2.1) is obtained from (2.5) at ?.= 2cosy and A, = A,= 1, Al = 0. Finally, we 
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(1.7) 

(2-l) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

write the solution of (1.7) in the form 

Second method. Applying to (1.7) an inverse Fourier transformation, we obtain a differ- 
ential equation with variable coefficients 

- (e-x + L+ + 2cos 7) f" (z)$ (r - e') f' + 2cos y f (4 = Q (4 (2.6) 

We will seek a solution in the form 
f(.z)=Ae=+C 

and find two linearly independent solutions of the homogeneous equation 

If )I= n/2, then the general solution of the homogeneous equation (2.6) is easily obtained by 
reducing the order of the equation. We shall not consider this case, since when y=nl2, the 
lune becomes a circle for which the first fundamental problem can be solved more simply. When 
vi n/2 , the general solution of (2.6) can be written in the form 

f (4 = Qf+ (3) + c*f- (4 + E (2) (2.7) 

where g(o) is a particular solution which can be found by varying the constants. Applying a 
Fourier transformation to (2.7), we obtain 

F(z)5 &6(5-i)+ *6(z)+j&6(z+i)+V(g) (2.8) 

Third method. Applying a Fourier transformation to (2.4) we obtain a differential equa- 
tion with constant coefficients 

2 ikAk @’ (=) = ‘5” @) 
Pchz+b (2.9) 

k-0 
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The corresponding equation for (2:l) takes a simpler form, namely 

::.lo! 

The general solution of the homogeneous equation (2.10) is 
'F1 (I) = c,pr + c,e-x 

and the particular solution s(z) of the inhomogeneous equation can be found by varying the 
constants. Applying the Fourier transformation to the general solution of (2.10), we obtain 

F (2) zz + (2.11) 

We can confirm by direct substitution that the linear combinations of the delta functions 
appearing in (2.8) and (2.11) satisfy the homogeneous functional equation (2.7). The function 
F(z) obtained by the second and third method yields the solution of the functional equation 
(1.7) in a wider class. 

Note. The function f(z)= V-l(F) has a well-defined physical meaning, namely f(z) describes 
the principal vector of the forces applied to the arcs p =fy /3/. If the constants are 
arbitrary, the components of the force vector may tend to infinity at the corner points (a= 
fm,fi=fy) From the mathematical point of view this implies that the solution of the problem 
in question will not be unique. For the solution to be unique, the boundary conditions must 
be supplmented by additional conditions as was done in /4/. 

3. Having determined the function F(z) , we use (1.6) to obtain W(5.p) 

w (G 8) = rsinzEIf)shByz [(zch?r+siny+shzycosy)chIBcosp+(chrysiny--shzy)shIBsinB] 

The function (Q/h) (a,fi) is obtained using the formula 

(3.1) 

(3.2) 

The integral in (3.2) is found using the method of residues. A table (/3/, p.61) may be used 
to find the singularities. We must also remember that the function F(Z) yields its own singul- 
arities. Having found (m/h) (a,p), we use the well-known formulas (/3/, p.61) to find the 
tangential and normal stresses. We will consider two special cases: 

1) q (2) = pd (+). Then, according to (2.4) 

F(z)=-i-i;i?rrj- V(D), D(z)= 
I 

"' (=) 2chzfZcosy 

and we find 
F(z) = -iv% (z'+ I)(2 COS I'+ 2)1-1 

2) q(z)= p = const. Solving the problem by any of the above methods and taking into 
account the note given above, we obtain 

and from (3.1), (3.2) we find 

(t) (%B) = P 
cosBsinv+vcosvcosB+8sinysinB 

Bncosy(cosysiny+y) ’ 
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